
Parameterized Templates

5-14 COOL User’s Manual

Since a user may have declared several kinds of a type of container class, the final pro-
gram size can be significantly reduced if all type-independent code is placed in a base
class. For example, the COOL Vector<Type> class implements a parameterized vector
class. However, all member functions and data that are independent of the specific Type

are placed in the base class Vector. This results in common functionality shared by sev-
eral kinds of vector classes, thus reducing the needless code replication that would oth-
erwise occur.

If not designed properly, a parameterized class can result in excessive code-replication
when used in a single application many times. When you are designing your own
parameterized classes, you can avoid this problem by putting all type-independent code
in a base class from which the parameterized class is later derived. The COOL
parameterized classes reduce the amount of code that is generated by doing this.

For example, if an application has a Vector<int>, Vector<char*>, and Vec-
tor<String>, there could be potentially three “copies” of all the member functions that
implement these classes. However, the base Vector class implements many of the sim-
ple bookkeeping member functions and exception routines that do not require knowl-
edge of or access to the type. The Vector<Type> class is derived from Vector. As a
result, although an application may parameterize Vector<Type> with several different
types, there will only be one copy of many of the member functions.

Storing Objects In 5.14 The COOL container classes allow the programmer to specify the type

Container Classes of object that will be stored and manipulated by the class. The following member func-

tions must be defined for any user-defined object that is to be contained in any container
class (all built-in types already support these operations):

• Type& operator= (const Type&);

• Boolean operator== (const Type&);

• Boolean operator< (const Type&);

• Boolean operator> (const Type&);

• friend ostream& operator<< (ostream&, const Type&);

• inline friend ostream& operator<< (ostream&, const Type*);

These member functions are assumed to be available for the type of object over which
the class has been parameterized. If any are missing, a compile time error is generated.
Although the programmer may not use these directly, the container class uses them for
such operations as assigning element values and printing the contents.

Parameterized Templates

5-13COOL User’s Manual

Member Functions: inline Type ##_state operator Type ##_state ();
Overloaded operator required by the compiler. It implicitly converts the current
position state information contained in a type-specific iterator object to the data
type expected by an associated container class object.

Iterator Example 5.12 The following program excerpt shows the use of an instance of the

Iterator<Type> class with an instance of the Vector<Type> class to save and restore
the current position.

 1 #include <COOL/Vector.h> // Include Vector header file

 2 #include <COOL/Iterator.h> // Include Iterator header file

 3 DECLARE Iterator<Vector>; // Declare Iterator for vector

 4 DECLARE Vector<int>; // Declare Vector of ints

 5 Vector<int> v; // Declare a vector

 6 Iterator<Vector> iv; // Declare a vector iterator

 7 iv = v.current_position(); // Save current position

 8 ... /* go do something that may change current position*/

 9 v.current_position() = iv; // Restore previous position

10 ... /* some action continuing from old place, ie. remove */

Lines 1 and 2 include the COOL Vector<Type> and Iterator<Type> classes and lines
3 and 4 declare a vector of integers and an iterator for vectors. Lines 5 through 10 repre-
sent code that might be contained at a point in the source file. Line 5 creates a Vec-
tor<int> object and line 6 creates an Iterator<Vector> object. Line 7 saves the
current position of a vector object so that the vector can be altered in line 8. Line 9 re-
stores the previous position value and the program continues with processing in line 10.

Making Your Own 5.13 COOL supplies several common container class data structures that

Container Classes can be used by the programmer in many application scenarios. However,

there are many other cases where a specialized container class customized for a particu-
lar problem is needed (for example, a BTree class for a database project). To augment
the COOL container classes with other compatible classes, a few requirements must be
met:

• The class must contain a private data member maintaining the current position with
member functions that update or reset this position as appropriate.

• The member functions next(), prev(), reset(), value(), remove(), and find() must
be defined and supported.

• If the name of the container class is Foo defined in header file Foo.h, there must be
a data structure of type Foo_state defined in Foo.h for use by the Iterator<Type>

class.

• The member function current_position() must be defined to return a reference to
the Foo_state data structure to allow the Iterator<Type> class to work efficiently.

Parameterized Templates

5-12 COOL User’s Manual

Iterator Class 5.11 In addition to the built-in iterator previously described, you can also have multi-

ple iterators over the same class by using the Iterator<Type> class. This is useful when
you move through the elements of a container class, come to a point where you need to
save the current position, and process elements at another location. After a period of
time, you return to the previous stopping point and continue where you left off.

The Iterator<Type> class provides an independent mechanism for maintaining the
state associated with the current position of an instance of a container class. Multiple
iterators over the same instance of a class can be supported. Each container class sup-
porting the current position notion has a data structure representing the state. This may
be as simple as a type long, or more involved, such as with a union of bit fields or an-
other class instance. In addition, each container class has a current_position member
function to get or set the current position. This member function facilitates storage and
retrieval of the current position.

The container-specific data structure used to hold the current position state in all COOL
container classes is, by convention, named class_state, where class is the name of the
container class header file. Thus, a user including Vector.h declares an Iterator<Vec-
tor> class, and the internal data structure that is created automatically and maintains the
state is of type Vector_state. In this manner, the Iterator<Type> class parameterizes
over the container class name (that is, Bit_Set, Vector, and so on). This class allocates a
data member of the appropriate type by concatenating the Type name with the string
“_state”. The user need not know about internal implementation details.

Each container class has the current_position public member function that returns a
reference to the iterator state data structure. The member functions supporting current
position functionality always work on the current position as maintained in the private
data section of the container class instance. A programmer can, at any point, change the
current position state information by using this member function to get and/or set the
current position of the container class.

Each state data structure implemented in every container class must support the assign-
ment of INVALID (defined in COOL/misc.h). A state with this value will result in an
Error exception if used by one of the current position member functions. Alternately,
the user can specialize the Iterator<Type> class to behave differently for a specific
class. This alternate mechanism is used by the COOL List<Type> class in the file
COOL/Iterator.h.

Name: Iterator<Type> — A parameterized iterator class

Synopsis: #include <COOL/Iterator.h>

Base Classes: None

Friend Classes: None

Constructors: inline Iterator<Type> ();
Simple constructor that initializes to INVALID the state information representing
the current position for a specific Type of container class.

inline Iterator<Type> (Type ##_state& state);
Constructor that takes a reference to the container-Type current position state and
copies the value to the internal data member. This constructor calls the cur-
rent_position() member function of some container class.

Parameterized Templates

5-11COOL User’s Manual

In many cases, you may need to create a specialized container class that is customized
for a particular problem (for example, a BTree class for a database project). Paragraph
5.12, Making Your Own Container Classes, will discuss the requirements for such a
case. However, first read the documentation for current position and iterators in the fol-
lowing paragraphs.

Container Example 5.10 Each of the COOL parameterized container classes supports the notion

(Current Position) of a built-in iterator maintaining a current position in the container. When
a container object is created, the current position is invalidated. Various member func-
tions change the contents or order of elements in a container object, and update the cur-
rent position marker as necessary (including invalidating it if appropriate). This might
occur, for example, if the elements of a container object are sorted according to some
new predicate, thus removing any significance to the current position setting.

In addition to this automatic tracking of the current position, the following member
functions are common to all container classes and can be used in a generic manner re-
gardless of the specific container class. The programmer uses the following member
functions to move through and manipulate the collection of objects in the container:

Member Functions Description

reset Resets the current position
next Advances to the next element
prev Backs up to the previous element
value Gets the element at the current position
remove Removes the element at the current position
find Finds an element and sets the current position

These member functions work efficiently for each container class. In most cases, an
inline is all that is needed. Other classes have more efficient versions of a specific mem-
ber function (such as, next/prev in Vector, or find in Hash_Table), but all have the
same semantic meaning. These simple member functions combine to make powerful,
general purpose functions and macros.

For example, you might define a function that takes a pointer to a generic object that is a
type of container class (see the section titled Polymorphic Management later in this
manual for more information on polymorphic functionality). The function iterates
through the elements in the container by using the current position member functions
without needing to know whether the object is a vector, a list, or a queue, and so forth. A
complete and useful example of this feature is provided in the section titled Macros later
in this manual.

Parameterized Templates

5-10 COOL User’s Manual

Container Classes 5.9 A container class is a specialization of parameterized classes which contains ob-

jects of a particular type. For example, the Vector, List, and Hash_Table classes are
container classes because they contain a set of programmer-defined data types. On the
other hand, the Range and Iterator classes are parameterized classes, but not container
classes, because you do not put objects into them. As container classes are so common-
place in many applications and programs, the COOL parameterized container classes
provide a mechanism to maintain one source base for several versions of very useful
data structures. The following container classes are currently available in COOL:

Association An association list of pairs of objects
AVL_Tree Height-balanced binary tree
Binary_Tree Fast, efficient binary tree
Hash_Table Dynamic hash table
List Dynamic Common Lisp style lists
Matrix Two-dimensional matrix
N_Tree N-ary tree
Queue Dynamic circular queue
Set Unordered collection of objects
Stack Dynamic stack
Vector One dimensional vector

One of the convenient aspects of the container classes is ease from the programmer’s
point of view. A container class that is parameterized over an object does not require the
user to manage memory. However, if the class is parameterized over a pointer to an
object, the programmer must allocate and deallocate all storage for the objects.

Generally, there is no performance gain from parameterizing over a pointer to an object
rather than the object itself because all COOL container classes use C++ references. In
fact, doing so may be less efficient than parameterizing over the object itself. Construc-
tors and destructors for the objects pointed to may be called every time you change, add,
or remove an element in the container. If, on the other hand, you parameterize over the
object itself, the constructor is called only once when the container class is created. Up-
dates and changes are performed via the assignment and/or X(X&) constructor. A valid
reason for choosing a pointer is when the size of each object might be different and/or
unknown at compile-time.

Example:

1 #include <COOL/Vector.h> // Bring in the template

2 DECLARE Vector<int> // Define the type

3 static Vector<int> foo; // Use the type

4 IMPLEMENT Vector<int> // Support the type

In this example, line 1 includes the parameterized COOL container class Vec-
tor<Type>. Line 2 declares an instance of this class to contain integers. Any valid C++
statement containing a data type can now be used with this type. Line 3 shows a use of
this new type to define a static variable. Line 4 must appear only once in all the source
files in an application. Line 4 generates the type-specific code that implements the
member functions of class Vector<int>. At this time, any member function can now be
called for an object of this type.

Parameterized Templates

5-9COOL User’s Manual

CCC Example 5.8 Suppose you have an application where you require a Vector<Type> class tem-

plate parameterized over the built1-in int type. You could use DECLARE and
IMPLEMENT and get all of Vector<Type>’s member functions expanded and linked
into your application. Typically, however, you are going to use only a small percentage
of the member functions of the class. The remaining unused member functions get
linked in as overhead into the executable image, increasing program size and memory
requirements. Consider the following program example

1 #include <COOL/Vector.h> // Include parameterized class

2 DECLARE Vector<int>; // Declare vector of integers

3 int main (void) {

4 Vector<int> v1; // Declare vector object

5 for (i = 0; i < 10; i++) // Copy 10 elements into vector

6 v1.push (i); // Add value to vector

7 cout << v1; // Print the vector

8 }

Line 1 includes the Vector<Type> class header file. Line 2 declares the type so that the
compiler knows about vectors of integers. Lines 3 through 8 implement a trivial pro-
gram that adds 10 elements to the vector object and outputs the results. This program
makes use of a constructor, the push member function, and the overload operator<<. If
compiled and linked in the normal manner, all the other Vector<Type> member func-
tions would also be linked into the application, even though they aren’t used.

To resolve this problem, the following line can be used in your application make file (as
in done for this example in ~COOL/examples/Makefile):

$(CCC) $(CCFLAGS) $(INCLUDE) $(MY_LIB) COOL/Vector.h –oVecInt –X”Vector<int>”

This command line executes CCC with the usual options and include directory search
path. In addition, an application-specific library archive file MY_LIB is designated to
hold the fractured template object files. The Vector.h header file is given as the source
file. The –oVecInt option causes CCC to generate object files named VecInt0,
VecInt1, VecInt2, etc. Finally, the –X”Vector<int>” option indicates that CCC should
generate code to support a vector of integers. The resulting object files (one for each
member function) from the fractured template are stored in the library archive.

NOTE: As with any intermediate compilation step, the –c option must be specified as
part of CCFLAGS, since it is passed onto the compiler indicating that it should not con-
tinue with the link phase.

To insure that the linker searches in the correct library archive for the fractured template
object files, add the application-specific library archive to the final link step (as is done
for this example in ~COOL/examples/Makefile):

CCC –o $(PROGRAM) $(OBJECTS) –L$(LIB_DIR) –l$(MY_LIB) –lCOOL

This command line creates a final executable image named $(PROGRAM) from all object
files specified by $(OBJECTS) using the libraries $(MY_LIB) and libCOOL.a to resolve
any external references.

Parameterized Templates

5-8 COOL User’s Manual

The user specifies one or more template files, a library archive name, and a specific
expansion type as command line arguments. Other arguments for the C++ compiler,
system linker, and so forth, are passed on unchanged to the various components of the
compilation process. A single invocation of CCC processes either a template or pro-
ceeds with the compilation of a regular C++ source file, but not both.

Several of the primary COOL classes use CCC to fracture an instance of one or more
parameterized classes. For example, the Symbol and Package classes (discussed in sec-
tion 11, Symbols and Packages) use only a few of the member functions of the Vec-
tor<Type> and Hash_Table<Type> classes to implement the runtime type checking
(discussed in section 12, Polymorphic Management). See the file ~COOL/Package/
Makefile for more information.

Name: CCC — The COOL C++ control program

Synopsis: CCC [–options REST: args] template library type

Options: –X“Name<Type>”

Expands the template for class Name with type Type. A template expansion must be
specified. The double quotation marks are required.

NOTE: The following options are used only in conjunction with the –X option;
otherwise, they are passed to the system C++ control program.

–o filename

Specifies the optional filename prefix to be used as the base name for each object
module. The default filename is the name of the class with an index appended to it
(for example, Vector5.o and Vector6.o). The filename must be unique inside the
library archive.

–l library

Places all resulting object files in the specified application library archive. A li-
brary archive must be specified.

–C
Keeps the fractured source files implementing each member function. This is use-
ful as a debugging aid when a template does not expand correctly due to some user
syntax error.

–I pathname

Searches the pathname for the specified header (template) source files.

Parameterized Templates

5-7COOL User’s Manual

To use this parameterized template, an application programmer includes the
parameterized vector header file and adds a DECLARE statement in every source file
that needs to know about the Vector<Type> class. In addition, an IMPLEMENT state-
ment must be added to only one source file. The following lines could be added to an
application program source file to use this parameterized vector class for type double:

1 #include <Vector.h> // Include parameterized class

2 DECLARE Vector<double>; // Declare vector of double

3 IMPLEMENT Vector<double>; // Implement vector of double

4 void print (Vector<double>& v) { // Function to print elements

5 for (i = 0; i < v.count(); i++) // For each element in vector

6 cout << v[i] << ”\n”; // Print the value

7 }

This simple function takes a single argument of a reference to a parameterized vector of
doubles object. It uses the count() member function inherited from the base class Vec-
tor to iterate through the elements of the object and print the value. An alternate proce-
dure for iterating through the elements of a parameterized container class is discussed in
paragraph 5.9.

NOTE: When IMPLEMENT is used in this manner, all the member functions of the
parameterized template are linked into the final executable image, even if they are never
referenced or used. To avoid this problem, use the CCC program as discussed below.

COOL C++ Control 5.7 Parameterized classes are compiled and manipulated by the COOL C++

Program Control program (CCC) which provides all functions of the original CC program and

also supports the COOL preprocessor and COOL macro language. CCC controls and
invokes the various components of the compilation process. In particular, it looks for
command line arguments specific to the parameterized template process and processes
them accordingly. Other options and arguments are passed onto the system C++ com-
piler control program.

When IMPLEMENT is used to expand a parameterized template, all the member func-
tions are placed in one source file. With the simple linkers available on many operating
systems today, a program links these member functions into the application executable
image, even if only one or two are actually used. The CCC program takes each
template specifying a member function, compiles it into a separate object module, and
adds it to an application-specific object library. As a result, only those member func-
tions actually used by the application get linked into the final program.

CCC takes the in-memory expanded code that implements a parameterized template
and fractures it along template boundaries. Each member function for a class is in its
own template. Each member function compiles into a separate object module named
(by default) the name of the source file with a number appended that is incremented
automatically for each member function. These separate object files are then added to
an application library. At link time, the system linker uses the symbols in this archive to
resolve external references. Since each member function is in its own object file in the
library archive, only those member functions used in the application are linked into the
final executable image.

Parameterized Templates

5-6 COOL User’s Manual

13 #include <Base_Vector.h> // Type-independent base class

14 #include <COOL/misc.h> // COOL definitions

15 template<class Type> class Vector<Type> : public Vector {

16 private:

17 Type* v; // Vector of pointer to Type

18 public:

19 Vector<Type> (); // Empty constructor

20 Vector<Type> (int); // Constructor with size

21 Vector<Type> (Vector<Type>&); // Constructor with reference

22 ~Vector<Type> (); // Destructor

23 inline Type& operator[](int n); // Operator[] overload for Type

24 Type& element (int n); // Return element of type Type

25 ... // Other member functions ...

26 };

27 template<class Type> // Overload operator []

28 inline Type& Vector<Type>::operator[] (int n) {

29 return this–>v[n];

30 }

31 template <class Type> // Constructor with size

32 Vector<Type>::Vector<Type> (int n) {

33 this–>v = new Type[n];

34 this–>size = n;

35 this–>num_elements = 0;

36 }

37 ... // Other member functions ...

Lines 1 through 8 declare a class Vector representing the generic functionality of the
parameterized vector class. Data members such as object size and element count are in
the base class. Lines 9 through 11 implement one of the inline member functions of this
base class. Type-independent member functions like count() are provided in the public
interface. Other member functions of this base class can be defined. The class declara-
tion and the inline member functions (lines 1 through 11) are written to a file Base_Vec-
tor.h and the non-inline member functions (line 12) located in the file Base_Vector.C.

Line 13 includes the base Vector class and line 14 includes the COOL declarations and
definitions necessary for the use of parameterized templates. Line 15 is a template for
the class Vector<Type> that inherits the type-independent Vector base class. Lines 16
through 26 declare part of the interface for the class. A more complete class would have
many other member functions and include support for the current position functionality
discussed later. Lines 27 through 30 use a template for an inline member function, and
lines 31 through 36 use another template for a constructor for the class. Unlike a non-
parameterized class, the class declaration, the inline member functions, and the non-in-
line member functions are all located in the same file Vector.h.

This abbreviated example is exactly how the code is organized for the COOL Vec-
tor<Type> class. Lines 1 through 11 are located in the file ~COOL/Vector/Base_Vec-
tor.h and specify type-independent features. Line 12 (that is, the member functions of
the base class) is found in ~COOL/Vector/Base_Vector.C and contains member func-
tion implementation code for the base vector class. Finally, lines 13 through 37 are lo-
cated in ~COOL/Vector/Vector.h and specify the parameterized vector class.

Parameterized Templates

5-5COOL User’s Manual

DECLARE and 5.5 Declaration and implementation statements are flexible and can be

IMPLEMENT nested in a variety of operations, such as declaring a list of vectors of integers.

Example In addition, an argument passed as a type name at one level can itself be used as an

argument to be passed at a lower level. This is done in the COOL Associa-
tion<Ktype,Vtype> class in conjunction with the fourth variation of template dis-
cussed earlier. An abbreviated header file for this class contains the following
statements:

 1 template <class Ktype, class Vtype> Association {

 2 DECLARE Pair<Ktype, Vtype>; // Declare pair object type

 3 DECLARE Vector<Pair<Ktype,Vtype>>; // Declare vector of pairs

 4 }

 5 template <class Ktype,class Vtype>

 6 class Association : public Vector<Pair<Ktype,Vtype>> {

 7 /* Association class interface specification */

 8 };

 9 template <class Ktype, class Vtype> Association {

10 IMPLEMENT Pair<Ktype,Vtype>;

11 IMPLEMENT Vector<Pair<Ktype,Vtype>>;

12 }

Lines 1 through 4 are placed before the Association<Ktype,Vtype> class definition,
thus becoming linked with the declarative part of the template for the class. Lines 5
through 8 contain the actual class definition. Lines 9 through 12 are placed after the
class definition, thus becoming linked with the implementation part of the template for
the class. By using template in this manner, the DECLARE for the Associa-
tion<Ktype, Vtype> class also invokes DECLARE for the correct types for the
Pair<Ktype,Vtype> and Vector<Pair<Ktype,Vtype>> classes. Likewise, IMPLE-
MENT for the Association class invokes IMPLEMENT for the Pair<Ktype,Vtype>
and Vector<Pair<Ktype,Vtype>> classes.

Template Example 5.6 Suppose a class programmer wants to implement a generic vector class with a

simple, consistent interface for the application programmer, regardless of what object is

to be stored in the vector. In addition, he wants to avoid replication of code for each
specific type. He creates a parameterized vector template derived from a type-inde-
pendent base class, as in the following abbreviated example:

 1 class Vector { // Vector class

 2 private:

 3 int num_elements; // Element count

 4 int size; // Size of vector object

 5 public:

 6 inline int count (); // Number of elements

 7 ... // Other member functions ...

 8 };

 9 inline int Vector::count (int n) {

10 return this–>num_elements; // Return element count

11 }

12 ... // Other member functions ...

Parameterized Templates

5-4 COOL User’s Manual

DECLARE and 5.4 As stated earlier, a parameterized template declares a metaclass that is

IMPLEMENT type-independent. To use the metaclass, a programmer must specify the actual type and

any other template arguments in order to use it in a program. This is accomplished in
two steps: the declarative step and the implementation step. The declarative step uses
DECLARE and the implementation step uses either IMPLEMENT or the Cool C++
Control program (CCC) discussed in paragraph 5.7.

Name: DECLARE — Declares a parameterized class
IMPLEMENT — Implements a parameterized class

Synopsis: #include <COOL/Name.h>
DECLARE Name<Type>;
IMPLEMENT Name<Type>;

Macros: DECLARE Name<Type>

Declares a parameterized class named Name of type Type.

IMPLEMENT Name<Type>

Implements a parameterized class named Name of type Type.

DECLARE instantiates a type-independent parameterized template for a user-speci-
fied type. DECLARE is analogous to using typedef to indicate a new valid type name
to the compiler, or including the header file for some standard C++ class declaration.
DECLARE must be used in every file that includes or makes use of a parameterized
template. Alternately, the DECLARE statement can be placed in a common header file
that is included as necessary. DECLARE must be followed by a valid parameterized
template name and a type name. Typically, this is done by including a header file with
common information and definitions.

IMPLEMENT defines the member functions of a parameterized template for a spe-
cific type. IMPLEMENT is analogous to the C++ file that contains the source code
implementing the member functions of a class. IMPLEMENT must be used only once
in an application for a specific instantiation of a parameterized template; otherwise, you
will receive errors from the linker about symbols being defined more than once. IM-
PLEMENT must be followed by a parameterized template name and a type
name.Typically, IMPLEMENT is done in one of the C++ source files making up part
of the application. The name and arguments must match those previously declared with
DECLARE.

NOTE: When you use IMPLEMENT, all the member functions for a particular
parameterized template are implemented in one source file. With the simple linkers
available on many operating systems today, an application will get all of these member
functions linked into the executable image even if only one or two are used. CCC pro-
vides a mechanism by which only member functions actually used in the application get
linked into the final program. See paragraph 5.6, COOL C++ Control program, for fur-
ther information.

Parameterized Templates

5-3COOL User’s Manual

The declarative part of the template may occur many times in an application and is
analogous to including a header file for a class. Template variations here declare the
class interface and define the inline member functions.

The implementation part of the template is analogous to the C++ file that contains the
source code implementing the member functions of a class. Template variations here
define the member and friend functions that constitute the parameterized class.

Name: template — C++ parameterized template keyword

Synopsis: template<class parms> class name<parms> { class_description };
Defines a template for the declaration of class name.

template<parms> result name<parms>::function { ... };
Defines a member function for the implementation of class name.

template<class parms> inline result name<parms>::function { ... };
Defines an inline member function for the declaration of the class name .

template<class parms> name { anything };
Defines anything else you want associated with a template.

The first variation of template declares a parameterized template in a header file. Typi-
cally, such a declaration is very similar to that of a standard C++ class, except for the
appearance of the angle brackets and arguments. The second variation defines member
functions of a parameterized template. The third variation defines inline member func-
tions of a parameterized template. Again, these appear similar to that of a standard C++
class.

The last variation of template defines such miscellaneous items as a typedef or an over-
loaded friend function of a parameterized template. When this form is found before the
class template, the contents are expanded before the class declaration. When this form is
found after the class template, the contents are expanded as part of the class implemen-
tation. This has been used in several COOL container classes for defining predicate
types for the class (see paragraph 5.5 example below).

Each of the template forms allow one or more optional parameters to be supplied be-
tween the angle brackets. These are used to allow the programmer to specify the type
and other optional arguments to the template with the following syntax:

parms ::= type name [, parms]

where type is the type of the argument, for example, a class, an int, and so forth. Name is
the name of the parameter that is substituted when the template is expanded. For exam-
ple, an n-ary tree class might have the following template class declaration:

template <class Type, int nchild> class N_Tree<Type,nchild> {...};

In this example, class N_Tree<Type,nchild> is defined as a parameterized template
with two arguments. The first, Type, specifies the type over which N_Tree is
parameterized. The second, nchild, specifies the number of subtrees each node in the
n-tree may have.

Parameterized Templates

5-2 COOL User’s Manual

Parameterized 5.3 A parameterized template is the mechanism that allows a programmer to

Templates define a metaclass representing a type–independent class. The class programmer uses

this facility to implement a class without knowing the specific type of data the user

might want to use. For example, a Vector class can be written by using parameterized

templates so that the user of the class can create vectors of integers, vectors of doubles,
and so on. This scheme allows the class programmer to maintain one source code base
for multiple implementations of the class.

Regardless of the type of object a parameterized template is to manipulate,the structure
and organization of the template and the implementation of the member functions are
the same for every version of the class. For example, a programmer providing a Vector
class knows that there will be several member functions such as insert, remove, print,
sort, and so on that apply to every version of the class. By parameterizing the arguments
and return values from the various member functions, the programmer provides only
one implementation of the Vector template. The user of the class then specifies the type
of vector at compile-time. The following parameterized templates are currently avail-
able in COOL:

Templates Description

Association An association list of pairs of objects
AVL_Tree Height-balanced binary tree
Binary_Tree Fast, efficient binary tree
Hash_Table Dynamic hash table
Iterator Container class iterators
List Dynamic Common Lisp style lists
Matrix Two-dimensional matrix
N_Tree N-ary tree
Pair Coupling of two objects
Queue Dynamic circular queue
Range User-specified type with limits
Set Unordered collection of objects
Stack Dynamic stack
Vector One-dimensional vector

The syntax of the COOL parameterized templates grammar is as specified by Bjarne
Stroustrup in his paper “Parameterized Types for C++” in the 1988 USENIX C++ Con-
ference Proceedings. COOL fully implements the specified syntax so there will be
minimal source code conversion necessary when this feature is finally implemented in
the C++ language.

The template keyword provides a means of defining parameterized templates. COOL
provides four variations of template for controlling the operation and generation of dif-
ferent parts of a class. Templates are expanded in two parts and each of the four vari-
ations is used in one of the two parts:

• The declarative part, which is needed by every program file that uses the
parameterized class

• The implementation part, which needs to be compiled once for the class in any ap-
plication that uses it

5-1COOL User’s Manual

PARAMETERIZED
TEMPLATES

Introduction 5.1 Parameterized templates allow a programmer to design and implement a general

purpose class without specifying the exact type of object or data that is to be manipu-
lated. The user can then customize this general purpose class by specifying the object or
data type when it is used in a program. Several versions of the same parameterized tem-
plate (each implemented with a different type) can exist in a single application.
Parameterized templates can be thought of as metaclasses in that only one source base
needs to be maintained in order to support numerous variations of a type of class.

An important and useful type of parameterized template is known as a container class.
A container class is a special kind of parameterized template where you put objects of a
particular type. For example, the Vector, List, and Hash_Table classes are container
classes because they contain a set of programmer-defined data types. Since container
classes are so commonplace in many applications and programs, parameterized con-
tainer classes provide a mechanism to maintain one source base for several useful data
structures. COOL supplies several common container class data structures that can be
used by the programmer in many typical application scenarios.

Each of the COOL parameterized container classes supports the notion of a built-in
iterator that maintains a current position in the container and is updated by various
member functions. These member functions allow progression through the collection of
objects in some order. For example, a function might take a pointer to a generic object
that is a type of container object. The function can iterate through elements in the con-
tainer by using current position member functions without needing to know whether the
object is a vector, list, or queue.

In addition to this built-in iterator, you can also have multiple iterators over the same
class by using the Iterator class. For example, you may be moving through the ele-
ments of a container class and come to a point where you need to save the current posi-
tion and begin processing elements at another location. After a period of time, you
return to the previous stopping point and continue where you left off.

Requirements 5.2 This section assumes you have an understanding of the C++ language and its type

system. In addition, some familiarity with automated program build procedures such as
make is also necessary.

Printed on: Wed Apr 18 07:05:31 1990

Last saved on: Tue Apr 17 13:56:04 1990

Document: s5

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

